Augmented-Virtual Reality: How to improve education systems

  • Manuel Fernandez Universidad Europea de Madrid


This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students’ learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students’ knowledge acquisition. Stakeholders in the educational role of technology include students, faculty members, institutions, and manufacturers. While the benefits of such technologies are still under investigation, the technology landscape offers opportunities to enhance face-to-face and online teaching, including contributions in the understanding of abstract concepts and training in real environments and situations. Barriers to technology use involve limited adoption of augmented and virtual reality technologies, and, more directly, necessary training of teachers in using such technologies within meaningful educational contexts. The author proposes a six-step methodology to aid adoption of these technologies as basic elements within the regular education: training teachers; developing conceptual prototypes; teamwork involving the teacher, a technical programmer, and an educational architect; and producing the experience, which then provides results in the subsequent two phases wherein teachers are trained to apply augmented- and virtual-reality solutions within their teaching methodology using an available subject-specific experience and then finally implementing the use of the experience in a regular subject with students. The essay concludes with discussion of the business opportunities facing virtual reality in face-to-face education as well as augmented and virtual reality in online education.

Author Biography

Manuel Fernandez, Universidad Europea de Madrid
Director of Strategic Initiatives - Laureate Europe


Abari, O, Bharadia, D., Duffield, A., & Katabi, D. (2017). Enabling high-quality untethered virtual reality. Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (pp. 531–544). Retrieved from

Arnab, S., Petridis, P., Dunwell, I. & de Freitas, S. (2011). Enhancing learning in distributed virtual worlds through touch: a browser-based architecture for haptic interaction. Serious Games and Edutainment Applications, 149–167.

Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6, 355–385.

Boletsis, C. & McCallum, S. (2013). The table mystery: An augmented reality collaborative game for chemistry education. In M. Ma, M.F. Oliveira, S. Petersen, & J. B. Hauge (Eds.), Lecture Notes in Computer Science: Vol. 8101. Serious Games Development and Applications (pp. 86–95).

Cheng, K.-H. & Tsi, C.-C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22, 449–462.

Curcio, I. D. D., Dipace, A., & Norlund, A. (2016). Virtual realities and education. Research on Education and Media, 8(2), 60–68.

De Souza e Silva, A. (2006). Re-conceptualizing the mobile phone - From telephone to collective interfaces. Australian Journal of Emerging Technologies and Society, 4(2), 108–127.

Di Serio, Á., Ibáñez, M. B., & Delgado Kloos, C. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596.

Falloon, G. (2010). Using avatars and virtual environments in learning: What do they have to offer? British Journal of Educational Technology, 108–122.

Gatto, K. (2011, April 19). A virtual reality scent system that fools human taste [Web log post]. Retrieved from

Hoffmann, M. , Meisen, T. & Jeschke, S. (2014). Shifting virtual reality education to the next level – Experiencing remote laboratories through mixed reality. Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies. Kuala Lumpur.

Huang, H.-M., Rauch, U. & Liaw, S.-S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55, 1171–1182.

Hwang, W.-Y. & Hu, S.-S.. (2013). Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Computers & Education, 62, 308–319.

Ibáñez, M. B., Di Serio, Á., Villarán, D. & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1–13.

Inoue, S. , Makino, Y., & Shinoda, H. (2015). Active touch perception produced by airborne ultrasonic haptic hologram. In J. E. Colgate, H. Z. Tan, S. Choi, & G. J. Gerling (Eds.), IEEE World Haptics Conference (pp. 362–367).

Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3),163–174.

Kumar, C. (2017, February 22). A new frontier: How can you profit from augmented and virtual reality? Retrieved from

LaValle, S. M. (2017). Virtual Reality. Illinois: Cambridge University Press.

Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174–187.

Meggs, S. M., Greer, A. G., & Collins, S. (2011). Integrating second life as a pedagogical tool for interactive instruction. Journal of Online Learning and Teaching, 7(3), 380–392.

Merry, P. (2016, September 28). Immersive Virtual Reality: Online Education for the Next Generation. Center for Digital Education. Retrieved from

Olshannikova, E., Ometov, A. & Koucheryavy, Y. (2014). Towards big data visualization for augmented reality. Proceedings of the CBI 2014: IEEE 16th Conference on Business Informatics, 33–37.

Prieto, M. (2017, January 1). ¿Despegará en 2017 la realidad virtual? [Will virtual reality take off in 2017?]. Expansión.. Retrieved from

Scholz, J., & Smith, A. N. (2016, March 15). Augmented reality: Designing immersive experiences that maximize consumer engagement. Harvard Business Review. Retrieved from

Schmalstieg, D. & Höllerer, T. (2016). Augmented reality: Principles and practices. Boston: Addison-Wesley.

Soo, D. (2016, August 2). A new age of VR involving all five senses. International Society for Presence Research. Retrieved from

Villarán, D. I., Ibañez, M. B., & Delgado Kloos, C. (2015). Augmented reality-based simulations embedded in problem based learning courses. In G. Conole, T. Klobučar, C. Rensing, J. Konert, & E. Lavoué (Eds.) Lecture Notes in Computer Science: Vol. 9307. Design for Teaching and Learning in a Networked World (pp. 540–543).

Virtual. (n.d.). In The American Heritage Dictionary of the English Language online (5th ed.). Retrieved from

Virtual. (2005). In Webster’s II New College Dictionary (3rd Ed.). Boston, New York: Houghton Mifflin.
How to Cite
FERNANDEZ, Manuel. Augmented-Virtual Reality: How to improve education systems. Higher Learning Research Communications, [S.l.], v. 7, n. 1, p. 1–15, june 2017. ISSN 2157-6254. Available at: <>. Date accessed: 23 aug. 2017. doi:
Invited Essays


Higher Education; New Technologies; Augmented Reality; Virtual Reality;